Reduced SIFT Features For Image Retrieval and Indoor Localisation

نویسندگان

  • Luke Ledwich
  • Stefan Williams
چکیده

SIFT features are distinctive invariant features used to robustly describe and match digital image content between different views of a scene. While invariant to scale and rotation, and robust to other image transforms, the SIFT feature description of an image is typically large and slow to compute. This paper presents a method to reduce the size, complexity and matching time of SIFT feature sets for use in indoor image retrieval and robot localisation. Our method takes advantage of the structure of typical indoor environments to reduce the complexity of each SIFT feature and the number of SIFT features required to describe a scene. Our results show that there is a minimal loss of accuracy in feature retrieval while achieving a significant reduction in image descriptor size and matching time. We also outline how the scale information of the SIFT features can be used to improve the accuracy of a localisation filter. The results were obtained using digital images from interior home and office environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Image Descriptor using VQ-SIFT for Image Retrieval

In this paper, we present local image descriptor using VQ-SIFT for more effective and efficient image retrieval. Instead of SIFT's weighted orientation histograms, we apply vector quantization (VQ) histogram as an alternate representation for SIFT features. Experimental results show that SIFT features using VQ-based local descriptors can achieve better image retrieval accuracy than the conventi...

متن کامل

Salient-SIFT for Image Retrieval

Local descriptors have been wildly explored and utilized in image retrieval because of their transformation invariance. In this paper, we propose an improved set of features extarcted from local descriptors for more effective and efficient image retrieval. We propose a salient region selection method to detect human’s Region Of Interest (hROI) from an image, which incorporates the Canny edge al...

متن کامل

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004